
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 1

Forecasting Gathering Events through Trajectory
Destination Prediction: a Dynamic Hybrid Model

Amin Vahedian Khezerlou, Xun Zhou, Ling Tong, Yanhua Li, Jun Luo

Abstract—Identifying urban gathering events is an important problem due to challenges it brings to urban management. Recently,

we proposed a hybrid model (H-VIGO-GIS) to predict future gathering events through trajectory destination prediction. Our approach

consisted of two models: historical and recent and continuously predicted future gathering events. However, H-VIGO-GIS has limitations.

(1) The recent model does not capture the newly-emerged abnormal patterns effectively, since it uses all recent trajectories, including

normal ones. (2) The recent model is sparse due to limited number of trajectories it learns, i.e. it cannot produce predictions in many

cases, forcing us to rely only on the historical model. (3) The accuracy of both recent and historical models varies by space and time.

Therefore, combining them the same way at all times and places undermines the overall accuracy of the hybrid model. Addressing these

issues, in this paper we propose a Dynamic Hybrid model called (DH-VIGO-TKDE) that addresses the above-mentioned issues. We

perform comprehensive evaluations using two large real-world datasets and an event simulator. The experiments show the proposed

model significantly improves the prediction accuracy and timeliness of forecasting gathering events, resulting in average precision of

0.91 and recall of 0.67 as opposed to 0.74 and 0.50 of H-VIGO-GIS.

Index Terms—Gathering Events, Destination Prediction, Trajectory Mining, Data Mining

�

1 INTRODUCTION

GATHERING events are the scenarios where an
unexpectedly-large number of moving objects (pedes-

trians, vehicle, etc.) arrive at the same region during a short
period of time. Gathering events in urban areas pose seri-
ous challenges for city management as more-than-ordinary
resources will be required and public safety concerns will be
raised. Example consequences may include traffic jams and
high risk of injury, crimes, and terror-attacks. Shanghai’s
2014 New Year’s Eve stampede is a tragic example [1].
If given timely warning of future gathering events, city
officials will have the opportunity to react to these situations
in a timely manner, e.g., re-routing usual traffic, adopting
necessary provisions, etc.

State-of-the-art techniques on urban event detection [2],
[3], [4], [5], [6], [7] are mostly descriptive, i.e., the region
and time of events are detected based on available on-site
observations such as taxi drop-offs or traffic volume around
the venue. These methods lack the ability to forecast future
events before the gathering becomes significant.

In our recent work [8], we investigated a gathering
event forecasting approach through trajectory destination
prediction. The approach worked in two steps. First, a
hybrid spatio-temporal destination prediction model was
learned from historical and recent trajectories of moving
objects (e.g., taxis). Second, we used the model to continu-
ously predict the destination and arrival time distribution of
incomplete trajectories, and identify future spatio-temporal
regions with high predicted arrival counts as gathering

A. Vahedian K., X. Zhou and L. Tong are with the Department of Management
Sciences at the University of Iowa, Iowa City, IA 52242, USA. E-mails:
{amin-vahediankhezerlou,xun-zhou,ling-tong}@uiowa.edu
Y. Li is with the Worcester Polytechnic Institute, Worcester, MA 01609, USA.
E-mail: yli15@wpi.edu
J. Luo is with Machine Intelligence Lab, Lenovo Group Limited, Hong Kong.
E-mail: jluo1@lenovo.com

events. We will refer to this method as H-VIGO-GIS (Hybrid
VIGO) throughout this paper.

However, H-VIGO-GIS has three important limitations.
First, the recent model was incorporated to learn the pat-
terns of ”non-typical” trajectories, as opposed to the his-
torical model that learns the ”typical” pattern of the trajec-
tories. However, recent model in H-VIGO-GIS learned all
the recent trajectories, regardless of them being normal or
abnormal. This led to a recent model that captured some
non-typical patterns but mostly typical ones. As a result, the
hybrid model had little ability in predicting newly-emerged
non-typical trajectory patterns. Second, the hybrid model
combines historical and recent models’ predictions with a
fixed weight. Depending on time and location, either of the
models could produce superior predictions. Therefore, the
weight needs to be adjusted to give more importance to the
more accurate model (i.e. historical or recent). Third, the
recent model used in H-VIGO-GIS is very sparse, meaning
that it cannot produce predictions for many of the sub-
trajectories, because it was trained with a limited number
of trajectories (i.e. only the recently completed ones). As a
result, H-VIGO-GIS relies on the historical model for those
sub-trajectories, which in turn results in less consideration
of newly-emerged non-typical patterns, reducing the ability
of H-VIGO-GIS to forecast rare events.

This paper is a significant extension to our prior work,
which addresses the above limitations in depth by making
the following contributions: (1) We adopt a radical approach
in training the recent model by only using the trajectories
that are significantly different from the historical trajectories.
This ensures that if there is a significant change in the
trajectory patterns, the recent model will capture all its
available evidence. (2) We propose a novel parameter setting
mechanism to dynamically adjust the combining weight
of the recent and historical predictions through space and

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 2

time. This mechanism tells the model, if the newly-emerged
trajectory patterns are to be trusted in future predictions
or not. (3) We propose a sparsity-improved destination
prediction model to be used for training the recent model,
which eliminates the sparsity problem and makes it possible
to use the few, recent and significantly different trajectories
for future predictions. We call the new Dynamic Hybrid
model DH-VIGO-TKDE. Our extensive evaluations, using
two large real-world datasets and an event simulator [9],
show that the proposed model has considerably superior
ability in terms of prediction accuracy and timeliness of fore-
casting statistically significant gathering events, compared
to baselines.

The remainder of the paper is organized as follows.
In Section 2, we discuss the related work. In Section 3
the destination prediction and event forecasting problems
are formulated as computational problems. Sections 4 and
5 discuss the proposed solutions. Section 6 presents our
evaluation and section 7 concludes the paper.

2 RELATED WORK
Availibility of advanced spatial sensing technologies, such
as GPS devices, allows us to record veraiety of big spatial
data such as spatial trajectories [10]. Therefore, mining of
big trajectory data has captured the interest of researchers,
from mining interesting locations and travel patterns [11] to
semantic mining of locations [12] and destination prediction
[13], [14], [15], [16]. In this work we focus on mining of
urban gathering events using spatial trajectories.

To the best of our knowledge, trajectory destination pre-
diction had not been used in the context of event detection
or forecasting prior to our recent work [8]. The works of
Martin Kulldorff and Neill [2], [3], [7], [17] and other recent
works on event detection [4], [5] focus on detecting events
using already observed counts at locations. The works of
Zhou et al. and Vahedian et al. [9], [18] are based on
real-time monitoring of significantly high flows in space
and are categorized as early-detection and not forecasting.
Hoang et al. proposed a crowd flow prediction model [19],
which could potentially be used to predict gathering events.
However this model works on a small number of large
regions thus could not precisely locate events. In our re-
cent work, we introduced a hybrid model (H-VIGO-GIS) of
destination predictors consisting of a historical and a recent
model for event forecasting, which enabled us to forecast
gathering events ahead of the time. However, H-VIGO-GIS
suffered from several limitations such as, no consideration
of statistical significance when attempting to learn rare
patterns, a fixed importance given to predictions produced
by the historical model and the recent model and prediction
sparsity of the recent model, due to limited number of its
training trajectories. In this paper, we address those issues
by making significant contributions on how and when the
recent model is trained, how the predictions of the two
models is combined, and how to take full advantage of
the limited evidence of abnormality, using the redesigned
destination prediction model.

Other works on event detection [20], [21], [22] use differ-
ent types of data, e.g. geo-tagged social media posts, instead
of mobility data. Therefore, they are not directly related to
our work. The works of Zheng et al. [23], [24] on gathering

patterns, focus on identifying a group of objects, trajectories
of which gather together at some points in space and time.
Their approach is not predictive and does not have an
account of abnormality. These works are not directly related
because, they solve a different problem than this paper, i.e.
they answer the who question, rather than where and when.

The literature of destination prediction problem can be
organized into two broad categories based on the data used:
(1) using context-related and personal trip data [15], [15],
[25], [26], [27], [28], [29], [30], [31], [32] and (2) only using
anonymous trip data (e.g., no traveler information). In this
paper we only use anonymous trip data to predict destina-
tions. Therefore, this work is not directly related to the first
category. A less related work in this category is the work
of Cancela et al. [33]. They focus on unsupervised modeling
of pedestrian behavior and does not apply to our prediction
problem. In the more related work in the second category, an
important challenge is the complex dependencies among the
segments of of an urban trip. To address this challenge, most
researchers have adopted a Markov model-based approach,
where the trip is decomposed into a sequence of transitions
between locations in space. These transitions are modeled
by low-order Markov chains, hence facilitating the calcula-
tion of the probability of an incomplete trip. The underlying
assumption is that future movements along a trip are inde-
pendent of the past movements. Xue et al. [13], [14] use this
technique to calculate the destination probabilities using the
Bayes rule. However, this Markov property assumption is
frequently violated in real-world scenarios and adversely
affects the prediction accuracy. Also the time and memory
costs to learn the prediction models are excessively high and
unfeasible for event forecasting. Li et al. [34] use a similar
approach but distinguish between transitions among via
points and transitions from via points to destinations in their
calculations of the transition probabilities. This approach
still does not properly address the independence issue in the
Markov model-based approaches. Wang et al. [16] propose
to condition the destination probability on the start location.
They learn three transition probability matrices: source to
destination, via points to destination and via point to via
point. They also define a direction concept called Mobility
Gradient for each sub-trajectory, which is used together with
the three transition matrices to calculate the destination
probabilities. However, in each of the transition matrices,
the probabilities are calculated based on the assumption that
they are independent of the other locations in the trip, which
also imposes limitations on the accuracy of the predictions.

Kitani et al. [35] proposed an activity forecasting method
that included a destination predictor. Their goal was to
model the pedestrian behavior. However, their destination
predictor is not applicable in our problem, because it only
produces ranking of potential destinations. In our work, to
obtain predicted arrival counts at each location, we need
to have the destination probability distribution of a moving
object and ranking will not be sufficient for our calculations.

In our recent work [8], we proposed a destination pre-
diction method that calculated the destination probabilities
conditioned on all the three locations: source, current lo-
cation and destination by proposing an efficient learning
algorithm that allows real-time predictions with efficient
use of memory. Our method resulted in higher accuracy

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 3

compared to methods which took advantage of the Markov
property. However, this approach potentially results in a
sparse model, specially when the number of learning exam-
ples (trajectories) is limited. By sparsity we mean the model
will not give any predictions to trips whose source and cur-
rent location does not exactly match a learned trajectory. In
this paper, we address the sparsity issue by calculating the
destination probability using a different set of conditions.

3 OVERVIEW

The Gathering Event Forecasting through Trajectory Des-
tination Prediction problem can be solved in three steps:
(1) Build a model for trajectory destination prediction. (2)
continuously predict the destinations of currently ongoing
trajectories, and (3) Identify gathering events based on the
predicted arrivals in every location and time slot. In this
section we define basic concepts and formulate these steps
into two sub-problems. Then we discuss the challenges
in solving these problems as well as an overview of our
proposed solution.

3.1 Concepts and Definitions
A spatial field S is a two-dimensional geographical region
partitioned into a grid with cells l1, l2, ..., ln as distinct loca-
tions in space. Given S, the location of any moving object at
a certain time can be mapped into a grid cell. For example,
locations of a moving taxi in a trip can be represented by a
sequence of grid cells, paired with the corresponding time.

Definition 1. A trajectory Y = {(s, ts), (v1, tv1), (v2, tv2) ,
..., (vn, tvn), (d, td)|s, vi, d ∈ S} represents a trip of a
moving object with a sequence of location and time pairs.
s and ts are the source location and start time of the trip,
while d and td are the destination location and arrival
time of the trip. The locations of the rest of the points vi
in the trajectory are called via locations of Y .

Taxi trips are examples of trajectories, where the pick-up
location is the source and the drop-off location is the desti-
nation. Based on definition 1, we define sub-trajectories to
represent incomplete trips (also referred to as ongoing trips).

Definition 2. A sub-trajectory Yc =
{(s, ts), (v1, t1), ..., (c, tc)} is the first few elements
of trajectory Y , where c ∈ {vi}.

The first record of a sub-trajectory still represents the source
of the trip but the last element of a sub-trajectory is a via-
point instead of the destination of the trip. It represent the
current location of the traveler.

Definition 3. A spatio-temporal region R = (SR, TR) is a
pair of spatial region SR and a time window TR, where
SR is a rectangular sub-region of the spatial field S.

In this paper we follow the definition of events in prior work
[8]. For a spatio-temporal region R, we calculate the average
number of trips ending in SR during the same time of day
as TR, denoted as BR or the baseline. The predicted number
of trips ending in SR during time TR is denoted as CR. We
employ an Expectation-Based Poisson Model [7] to calculate
the log-likelihood ratio between the hypothesis that there
will be an elevation of arrivals in R versus the hypothesis

that the predicted arrival count is normal. The log-likelihood
ratio is calculated as follows:

LLR(R) =

{
CR log CR

BR
+ (BR − CR) if CR ≥ BR

0 otherwise
(1)

As proved in a prior paper [18], the LLR(R) score is
statistically significant at α level if 1-Pr(X < CR) ≤ α,
where X ∼ Po(BR).
Definition 4. A gathering event is a spatio-temporal region

R such that LLR(R) is statistically significant at α level.

3.2 Problem Statements
We formulate the two steps of our approach into two sub-
problems, namely, the destination prediction problem and
the event forecasting problem.
Sub-Problem 1: Destination Prediction. Given: a spatial
field S , a set of historical trajectories X , and a sub-trajectory
Yc, Find: the probability of each location in S to be the
destination of Yc as well as the probability distribution of
the arrival time.
Sub-Problem 2: Event Forecasting. Given: a spatial field S,
a set of historical trajectories Xh, a list of sub-trajectory U
at current time, a target time-window t, and statistical sig-
nificance threshold α, Find: Top-k gathering events at time
t with the highest LLR scores. The Objectives of both sub-
problems are to reduce computation cost while improving
the accuracy of results.

3.3 Challenges and Solution Overview
Two challenges arise when designing the computational
solutions to our proposed problem. We illustrate them with
examples to motivate our solutions.

First, it is challenging to handle the trade-off between
destination prediction accuracy and computational cost.
Prior research have assumed the urban trips have low-
order Markov property [13], i.e. the movement at each stage
of the trip is only dependent on the current location but
independent of previous steps. This assumption, although
helpful in reducing computational cost, is unrealistic and
limiting, and might lead to lower accuracy. Fig. 1 shows
a counterexample of this assumption. A quiet two-way
street (light-shaded, top-down) overpasses a busy one-way
express way (darkly shaded, left to right) at c, where the
traffic volume on the latter is 9 times of that on the former.
A moving object started a trip at s and currently at c will be
predicted to go right with 90% probability, if assuming first-
order Markov property. However, considering the source of
the trip, the probability of moving downwards (100%) is
much higher than moving to the right (0%).

In our approach, we relax the Markov assumption to
predict the destination of a moving object based on the
current location and the start location. However, doing
so requires significant amount of memory to store all the
combinations of source, via location, and destination. To
address this challenge, we propose a Via Location Grouping
(VIGO) approach that combines via locations with the same
destination distributions to effectively reduce memory cost.

Another challenge is the temporal non-stationarity of
urban trip patterns, which might deviate significantly from
the historical patterns in case of rare events. For example,
taxis taking passengers from a hotel zone are more likely

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1: Example of
Markov property
assumption

Fig. 2: High-level workflow of the
event forecasting framework.

to end up at the airport. However, during a big event such
as a sports game or a concert, the most likely destination
might be a stadium instead. This phenomenon is challeng-
ing to handle in gathering event forecasting since a global
destination prediction model might not be able to accurately
predict destinations for trips going to these events.

We address this challenge by proposing a dynamic
hybrid event forecasting mechanism. A historical model
learned from all the historical trajectories is dynamically
combined with a recent model learned from recent trajec-
tories that are significantly different from historical trajecto-
ries. The dynamic combination of the historical and recent
models produces a powerful hybrid model that is robust to
changes in historical patterns.

Fig. 2 demonstrates the high-level overview of the so-
lution framework proposed in this paper and how the two
components, destination prediction and event forecasting,
interact with each other. A destination predictor is built
using complete trajectories, then the event forecaster takes
real-time sub-trajectories as input and uses the output of the
destination predictor to forecast top gathering events.

4 TRAJECTORY DESTINATION PREDICTION
4.1 A Simple Classification Model
The destination prediction problem can be defined as a
classification problem, i.e. every location is treated as a
class. To classify each sub-trajectory, the Bayes classifier is
commonly used to compute the probability of a location as
the destination, conditioned on the observation of a sub-
trajectory Yc. Based on the definition of the conditional
probability and Bayes’ Theorem, we have:

p(d|Yc) =
p(d ∩ Yc)

p(Yc)
=

p(Yc|d)× p(d)

p(Yc)
(2)

In this paper, by probability of a location, we mean the
probability of the moving object being at that location.
Therefore, p(d) in Eq. 2 means probability of being at d. The
approach of Eq. 2 involves calculating p(Yc|d). Commonly,
related work (e.g. [13]) solve the problem based on the
Markov property assumption. That means, the probability
of a sub-trajectory p(Yc) is the product of the probabilities
of all the pair-wise transitions. As previously illustrated
in Sec. 3.3, this assumption is not realistic and may give
poor results particularly when predicting destinations of
trajectories along unpopular routes.

To address this limitation, we relax the Markov property
assumption by using the combination of source and current
location (s, c) to replace the entire partial trajectory Yc. This
suggests that the destination is dependent on the combina-
tion of source and the current location. We argue that this is

Fig. 3: The proposed VIGO index structure.

a realistic yet computation-friendly simplification of Eq. 2,
which achieves higher accuracy compared to the Markov-
based approaches. We rewrite Eq. 2 in the following way:

p(d|s ∩ c) =
p(s ∩ c ∩ d)

p(s ∩ c)
=

dest(s, c, d)

via(s, c)
(3)

In Eq. 3, s is the source of Yc and c is its current location.
via(s, c) is the total number of trajectories with s as the
source and c as a via location. dest(s, c, d) is the total
number of such trajectories that end at d in the data. A naive
approach to learn the prediction model of Eq. 3 is to store
the counts via(s, c) and dest(s, c, d) of every combination of
s, c and d in S. In such a case, if S is a 128×64 grid, we will
need to store (128× 64)3 ≈ 5.5× 1011 counts. With a 4-byte
data-type, we will need 2 TB of memory to learn and apply
the model of Eq. 3. Considering the hardware capabilities
of an average machine, this approach is infeasible. VIGO
[8] is an efficient solution that addresses this challenge by
significantly reducing the memory cost.

4.2 VIGO: A Scalable Via-Location Grouping Approach
for Destination Prediction
The main idea behind VIGO is that many via locations of the
same source share exactly the same destination probabilities.
This is particularly true for locations along major roads
with high traffic volume. For instance, consider a sequence
of locations on a major expressway between two exits.
These locations will for sure have the same destination
probability distributions for a particular s. In our recent
work [8], we proposed a scalable Via-Location Grouping
(VIGO) approach which efficiently reduces the memory cost
required to learn the model of Eq. 3.

4.2.1 The VIGO Index Data Structure

First we introduce the concept of a “via group”, which is a
key idea in our proposed VIGO Index structure.
Definition 5. A via group of a source location s, denoted as

V Gi(s) is a set of via locations lvj where for every lvj ∈
V Gi(s) we have via(s, lvj) > 0 and ∀lvj , lvk ∈ V Gi(s) and
d ∈ S, dest(s, lvj , d) = dest(s, lvk, d). Each via location of
the same source could belong to only one via group.

In Fig. 3, the destination counts of via nodes lv2 , lv5 , and lv6 are
exactly the same. They should form a via group of s. We only
need to store one copy of the destination counts for the two
of them. Fig. 3 demonstrates the VIGO index for a particular
source location s. The first level is a two dimensional grid
indexing all the possible source locations. Each location s
points to a via quad-tree at the second level, which stores

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 5

the counts of via locations c for source s. The via quad-
trees save memory through partitioning of space, as the
trajectories in the dataset dictate. The quad-trees replace
dense matrices that would neglect spatial sparsity and waste
memory. The leaf node v of the via quad-tree corresponding
to source s stores the via count via(s, c). For each via quad-
tree leaf node, we add a pointer to the destination list. Each
destination list has an array storing destinations and counts.
Via locations pointing to the same destination list form a via
group and they have the same destination count distribution.
In level 2 of Fig. 3 the partitioning of the via tree is shown
on the right. Each shaded area in the partitions represents a
unique via group. There are four via groups in total in this
example.

For each destination list, we track the number of via
locations in the group. This count is followed by an array
of destinations and their counts. For example, V G4 has 2
via locations and it has 3 possible destinations: ld9 , ld14, and
ld16, all with count=1.

4.2.2 Learning of the VIGO Model

The above data structure can save quite much memory by
reducing the number of via and destination counts stored.
However, we also need to design an efficient and correct
learning algorithm to build this model. To learn the VIGO
model, we still read each historical trajectory once and go
through its points from the source to the destination once.

Algorithm 1 shows the VIGO-Learner algorithm based
on the proposed VIGO index structure. The input is a set of
trajectories and the output is the updated VIGO Index. The
algorithm takes one trajectory at a time, and updates the
underlying VIGO index. For a trajectory Y with source s
and destination d, we fetch the corresponding via quad-tree
Qv(s). Then we scan each via location v in Y sequentially
(Line 6) and update the VIGO index M according to the
following rules.
1) If a via location v ∈ Y was not in Qv , we insert it into Qv

and set via(s, v) = 1 (line 5-7).
2) All the “new” via locations vi along Y that are newly

inserted into Qv should be assigned to the same new
group. When scanning the first such via location, we
create a new group V G new and add d as the only des-
tination, with count = 1 (Line 8-10). For all the following
new via locations, we assign all of them to this group
(Line 11).

3) All the “old” via locations vj along Y that were already in
Qv also need to be moved to new groups, because a new
destination d could potentially change the destination
distribution of these via locations. Thus we create a new
group to hold these via locations. Suppose vj was in
old group before Y was learned (Line 15-16). If vj is
the first via location in old group to be processed, then
we create a new via group new group by copying the
destination array of old group. If d is already in the array
then we increment the count. Otherwise we append d at
the end with count = 1. Then vj ’s via group pointer will
change to new group(Line 17-19). To avoid creating mul-
tiple new group for future via locations in old group, we
thereby put a pointer map in old group to new group
to record this group transfer (Line 20). For future vk in
old group, we use this pointer to find new group and

Algorithm 1: The V IGO Learner Procedure

Input: List of all trajectories (X)
Output: A VIGO Index (M)

1 cur trj ← 0; M [] ←NULL
2 for each Y ∈ X do
3 Qv ← M [Y.s]
4 for each via location v ∈ Y do
5 if v not in Qv then
6 via node ← Qv .insert(v)
7 via node.count = 1
8 if V G new == NULL then
9 V Gnew ← Create new via group

10 V Gnew.dst array[0]←(Y.d, 1)

11 via node.group ← V Gnew

12 else
13 via node ← Qv .get node(v)
14 via node.count++
15 old group ← via node.group
16 new group ← old group.map
17 if new group == NULL ||

old group.trj
= cur trj then
18 new group ← Create a copy of

old group
19 new group.increment count(Y.d)
20 old group.map ← new group
21 old group.trj ← cur trj

22 via node.group ← new group
23 new group.v count++
24 old group.v count−−
25 if (old group.v count) == 0 then
26 Delete old group

27 V Gnew ← NULL; cur trj ++

28 return M

move vk over (Line 22-23). Also, when a new trajectory
comes in, all the group mapping information will be
reset. We simply use another variable cur trj in each
destination array to make sure that old mappings are not
used when learning the next trajectory (Line 21).

4) After each via location is moved to a new via group,
we check the number of via locations remaining in the
old group and delete it if it is empty. This avoids unnec-
essary memory cost (Line 24-26).

An illustrative example: Fig. 4 shows an example of how
the trajectories are learned into the VIGO structure. First,
Y1 = {s, lv2 , lv5 , lv6 , ld1} is fed to the learner (Fig. 4 (a)), via
locations lv2 , lv6 and lv5 do not exist in the via tree of s. There-
fore, a new via group is created V G1(s) = {lv2 , lv5 , lv6}, which
has only one destination ld1 . When Y2 = {s, lv7 , lv11, lv10, ld9}
is fed to the learner (Fig. 4 (b)), same scenario happens
and group V G2 = {lv7 , lv10, lv11} is created. When Y3 =
{s, lv7 , lv11, lv10, ld14} is fed to the learner (Fig. 4 (c)), it copies
V G2 to create V G3 and appends ld14. Then V G2 gets
deleted because no via locations point to it anymore. When
Y4 = {s, lv7 , lv11, lv12, ld16} is fed to the learner (Fig. 4 (d)), V G3

is copied to create V G4. Then ld16 is appended to V G4. When

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 6

(a) Learning Y1 (b) Learning Y2 (c) Learning Y3 (d) Learning Y4

Fig. 4: An example of learning the VIGO structure.

Y4 visits lv12, similar to Y1 and Y2 where the via point was
being visited for the first time, a new group is created and
ld16 is added to it. However, V G3 does not get deleted this
time, because it has one remaining member lv10 after losing lv7
and lv11. Finally the VIGO index has four destination arrays,
one for each via group.

We show, through the following lemma and theorem that
the VIGO Learn algorithm can correctly build the VIGO
Index with all the necessary counts.
Lemma 1. Given a set of via locations lv1 , l

v
2 , ...l

v
k that belong

to the same via group V Gi(s). If an incoming trajectory
Y traverses all of them, then after Y is learned, these via
locations will still belong to the same via group in VIGO.

Proof 1. Since lv1 , l
v
2 , ...l

v
k were in the same via group V Gi(s),

they share the same destination array Dest(s, V Gi(s)).
Since each trajectory only has one unique destination,
the new destination count distributions of vi, i = 1...k
after learning Y are identically Dest(s, V Gi(s))

⋃
(d, 1).

Per the definition of a via group, lv1 , l
v
2 , ...l

v
k still belong

to the same via group.

Theorem 1. The VIGO Learner algorithm is correct, i.e.,
the via locations assigned in the same via group in a
learned VIGO Index always have the same destination
distribution.

Proof 2. Algorithm 1 always moves the via locations that
were in the same old via group and passed by the
same trajectory to the same new via group. According to
Lemma 1 and Definition 5, the VIGO Learner algorithm
is correct.

4.3 Spatio-Temporal Destination Prediction
To complete the entire trajectory destination prediction com-
ponent presented in Fig. 2, we need to predict not only the
destination location, but also the arrival time. However, Eq.
3 only predicts the location of the destination. To predict
the destination time, we calculate travel time probability
distribution between pairs of via and destination locations,
defined as p(Δt|c, d), where d is destination and c is a
via location and Δt = td − tc. Therefore, we compute the
probability of spatio-temporal destination {d, td} for sub-
trajectory Yc with source s and current location c using the
following equation:

p({d,Δt}|s ∩ c) = p(d|s ∩ c)× p(Δt|c, d) (4)

Eq. 4 is obtained based on the assumption that the travel
time between two given points c and d is independent of
the points the trajectory visited before c. In other words, the
travel time between two points in space only depends on

Fig. 5: Travel time distributions.

Algorithm 2: VIGO ST Learner

Input: List of all trajectories (X)
Output: A Spatio-Temporal Destination Predictor

MST

1 cur trj ← 0; M ← NULL; L ← NULL
2 for each Y ∈ X do
3 Qv ← M [Y.s]
4 for each via location v ∈ Y do
5 Same as Line 5-26 in VIGO Learner
6 if L[v].get node()==NULL then
7 node ← L[v].insert(d)

8 node.count[td - tv]++
9 node.total++

10 Same as Line 27 in VIGO Learner

11 return MST =(M ,L)

the two points themselves. We argue that this assumption is
reasonable because unlike destination, travel time is only
determined by the route that will be taken rather than
determined by a travel plan made ahead of time.

To save memory cost, we use a data structure similar to
the top two levels of the VIGO Index to store the travel time
distributions. Fig. 5 shows an example of this data structure.
The top level is a two dimensional grid index for the current
location c. Each grid points to a quad-tree of possible desti-
nations from c. Each leaf node of this quad-tree contains the
destination d as well as an array of possible travel time and
the corresponding counts. Through the analysis of our data
we find that more than 93% of all the trips are shorter than
30 minutes. Therefore we limit the size of the array to 30.
The travel time distribution can be learned simultaneously
with the VIGO Index structure. We integrate this process
with the VIGO Learner algorithm and design a V IGO ST
algorithm. The pseudo code is presented in Algorithm 2.
The algorithm takes one trajectory at a time and scans all
the via locations sequentially. A via location v is used to
update the VIGO index first (Line 5), and then the count for
travel time d.t − v.t is incremented (Line 6-9). The output
is an integrated ST destination predictor MST . Compared

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 3: VIGO ST Predictor

Input: A VIGO ST Model MST = (M,L),
Sub-trajectory Yc

Output: Destination probability D at each location
and time

1 D ← ∅
2 via node ← M [Yc.s].get node(c)
3 via count ← via node.count
4 dst array ← via node.group.dst array
5 for each d in dst array do
6 probd = dst array[d]/via count
7 for each Δt in L[c].get node(d) do
8 probt = (L[c].get node(d))[d]
9 D[d][tc +Δt] ← probl × probt

10 return D

to the learning phase, destination prediction using the ST
destination predictor is relatively simple. Given a partial
trajectory Yc with source s and current location c, we first
predict the destination location probability. This can be done
by finding via(s, c) at the via node of c in VIGO index. Then
we also find dest(s, c, di) for all the possible destinations di
by scanning every entry in the destination array of c’s via
group. The destination probability is calculated according to
Eq. 3. Then we find all the possible travel times between c
and di and their probability. Finally we use Eq. 4 to calculate
the ST destination probabilities.

VIGO ST is the building block of our DH-VIGO-TKDE
event forecasting method. It is a state-of-the-art destination
prediction model that implements the Bayes Classifier for
destination prediction problem. VIGO ST has two key prop-
erties that make it ideal for the gathering event forecasting
problem: (1) It produces empirical destination probability
distribution of a given sub-trajectory across space and future
time. (2) It is memory and time-efficient, therefore can be
kept in memory at all times and can be used in a real-
time setting. In the next section, we show how we use these
capabilities and present how we build a Dynamic Hybrid
event forecasting model using VIGO ST.

5 GATHERING EVENT FORECASTING
This section presents the Event Forecasting component of
our proposed solution. First, we present our baseline H-
VIGO-GIS from our recent work [8]. Through the rest of
the section, we propose our novel Dynamic Hybrid model
DH-VIGO-TKDE.

5.1 Baseline: A Hybrid Event Forecasting Model (H-
VIGO-GIS)
As mentioned in Sec. 3.3, due to the temporal non-
stationarity in the urban trips, a global prediction model
may not make accurate predictions at all times, especially
for trips to rare gathering events. Instead, recent trajectories
may better reflect short-term changes of trip patterns. There-
fore, we propose a hybrid destination prediction model,
which consists of a historical model learned once using
long-term historical data, and a recent model built only
based on recently observed trajectories. The final destination
probability of each location and arrival time is calculated as

a weighted average of the results from these two models. We
re-train the recent model for every time-step to continuously
predict the arrival count at each location and time.

There are two sets of trajectories: historical trajectories
Xh, and recent trajectories Xτ which contains the completed
trajectories within the last τ time-steps. A historical model
Mh is trained using Xh, and a recent model Mr using Xτ .
Then the destinations of each sub-trajectory at time tg is
predicted using both Mr and Mh. The final destination
probability is calculated as a weighted average as shown in
Eq. 5. β is a weight between 0 and 1 to adjust how much we
trust Mh versus Mr . ph({d,Δt}|s, c) and pr({d,Δt}|s, c) are
the destination probabilities of d, after Δt time-steps given
by Mh and Mr respectively, while Δt = td − tc. Note that
due to the limited amount of data used in the recent model,
it is possible that it does not have a prediction for a certain
(s, c) combination. In such cases, β is set to 0.

p({d,Δt}|s ∩ c) =(1− β)× ph({d,Δt}|s ∩ c)

+ β × pr({d,Δt}|s ∩ c)
(5)

Once the destination probability distribution of every sub-
trajectory has been predicted, the arrival count is calculated
as the expectation of trips ending at each location and
time, given the list of sub-trajectories at tc. We calculate the
predicted arrival count of each location at target time tg as
follows:

A(d, tc, tg) =
∑

Yc∈U(tc)

p({d, tg − tc}|s ∩ c) (6)

Where U(tc) is the list of sub-trajectories at time tc, s is the
source and c is the current location of Yc.

After the prediction is made, the recent model for time
tc is discarded and a new recent model is built in the next
time-step tc + 1. Meanwhile, all the trajectories completed
at time tc are learned into the historical model Mh.

5.2 DH-VIGO-TKDE: A Dynamic Hybrid Event Forecast-
ing Model
H-VIGO-GIS incorporates a recent model to capture newly-
emerged trajectory patterns. The assumption is that if there
is a rare event, the trips that go to the event will not have the
same behavior as historical trips. While, the recent model
will learn the new behavior of the trips going to a certain
location, it will learn the same historical pattern from the
rest of the trips, which will make it harder for H-VIGO-
GIS to learn the rare patterns, if they are accompanied by
regular patterns. Next, we propose a method to address this
limitation.

5.2.1 A Mechanism to Filter Recent Trajectories

As discussed above, not all the recent trajectories are useful
for capturing recently emerged abnormal patterns. Only the
trajectories that are significantly different from the historical
ones are evidence of the abnormal patterns and should be
learned into the recent model. For instance, let c be a via
point of a given trajectory Y . Let s and d be its source and
destination. We would like to decide whether to learn Y into
the recent model or not, based on comparing (s, c, d) with
historical trajectories. The pattern of historical trajectories is
already captured in the historical model Mh. Given (s, c),
the historical model Mh can predict the destination of Y
based on the historical patterns. Let d̂h be the predicted

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 8

destination of Y according to Mh. By comparing the true
destination, d to the predicted destination d̂h, we can de-
termine if Y is abnormal or not. If d is too far from the
predicted destination d̂h, then Y is likely to be abnormal.
However, d̂h is not simply one location. It is a probability
distribution of the destination of Y among all the locations
in S, according to Mh. In our grid setting, d̂h is a joint
distribution of X and Y grid coordinates. Therefore, we
would like to calculate a distance between a point and
a multi-variate distribution. To accomplish this, we use a
distance measure called Mahalanobis distance [36], which is
defined as follows:

D(�x) =
√

(�x− �μ)TCov−1(�x− �μ) (7)

where �x is an observation, in this case d. �μ is the mean of
d̂h and Cov is the covariance matrix of d̂h. Eq. 7 produces a
distance measure between d and d̂h. This measure, in con-
junction with a chi-square table, is widely used for outlier
detection. We use the same table to determine whether Y is
significantly different from history. If it is, we learn it into
the recent model. Otherwise, it is skipped.

5.2.2 Sparsity of the Recent Model

Using only a subset of the recent trajectories for training,
will result in sparsity. In other words, because the recent
model is trained with limited number of trajectories, it
will only provide predictions for a small set of (s, c) pairs.
This will force us to rely on the historical model for those
predictions, which in turn will adversely effect our ability
to forecast rare events. To address this issue, we propose
a new classification model. The new classification model
is based on the model introduced in Eq. 3. However, it
predicts the destination probability using the direction of
the sub-trajectory, instead of its source, in addition to its
current location. Sub-trajectory direction is a more general-
ized property of the sub-trajectory, compared to its source.
We define five directions: north-east, north-west, south-east,
south-west and null direction. Null direction means the
sub-trajectory does not have a direction yet, i.e. current
location is the same as the source location. The directions
are determined by comparing the current location to the
source location. For instance, if the current location is to the
south-west of the source, the direction is south-west. Thus
the classification model is proposed as follows:

p(d|w ∩ c) =
dest(w, c, d)

via(w, c)
(8)

Where w ∈ {0, 1, 2, 3, 4} is the direction of the
sub-trajectory based on its source and current location.
dest(w, c, d) is the number of trajectories, which had d as
their destination while having c as their via point, at which
they had the direction of w. via(w, c) is the number of
trajectories that had c as their via point, at which they had
the direction of w. We adapt the VIGO structure, presented
earlier, to this new model, which we call VIGO-Lite. Fig. 6
shows the VIGO-Lite index, learned from the same trajec-
tories as Fig. 3. In the first level of the new structure, the
location index is replaced by a direction index. Note that
the via quad-tree and the learned groups are different from
Fig. 3, because Fig. 6 only shows the via locations which

Fig. 6: VIGO-Lite index structure.

Algorithm 4: VIGO-L ST Learner

Input: List of all trajectories (X)
Output: A VIGO-L ST Model MST

1 cur trj ← 0; M ← NULL; L ← NULL
2 for each Y ∈ X do
3 for each via location v ∈ Y do
4 w =get direction(Y.s, v)
5 Qv ← M [w]
6 Same as Line 5-9 in VIGO ST Learner

7 Same as Line 10 in VIGO ST Learner

8 return MST =(M ,L)

were traversed in south-west direction. The spatio-temporal
destination prediction model can be inferred in the same
way as Eq 4:

p({d,Δt}|w ∩ c) = p(d|w ∩ c)× p(Δt|c, d) (9)

Finally, we have the following formula when considering
both historical and recent models:

p({d,Δt}|s ∩ c) =(1− β)× ph({d,Δt}|s ∩ c)

+ β × pr({d,Δt}|w ∩ c)
(10)

Where w is obtained using s and c. Alg. 4 shows the
pseudo code for the proposed classification model, learned
into the VIGO-Lite structure. Alg. 5 shows the pseudo code
for spatio-temporal predictor using the spatio-temporal
VIGO-Lite model learned in Alg. 4. The two algorithms are
different in the way they access the via quad-tree. They
use the direction at current location, instead of the source
location (lines 4-5 in Alg. 4 and lines 2-3 in Alg. 5).

5.2.3 Setting the Value of β Dynamically

Setting β to a suitable value is crucial for the model’s ability
to make correct predictions in case of unusual trip pattern.
To this end, three situations can arise. (1) The trips behave
differently from the historical observations because of a rare
event. In this case, having a high value for β is desirable, as
it will give more emphasis to recent behavior. (2) The trips
behave as they have behaved in the historical observations.
In this case, the value of β does not matter. Because the
predictions resulting from recent observations will be the
same as the predictions from the historical ones. (3) The
trips are starting to go back to their normal pattern, after
behaving differently for a while, e.g. when everybody has

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 5: VIGO-L ST Predictor

Input: A VIGO-L ST Model MST = (M,L),
Sub-trajectory Yc

Output: Destination probability D at each location
and time

1 D ← ∅
2 w =get direction(Y.s, v)
3 via node ← M [w].get node(c)
4 Same as Line 3-9 in VIGO ST Predictor
5 return D

arrived at the venue of the rare event. In this case, the
recent observations do not represent the future behavior
of the trips. If we keep using a high value for β, we will
over-estimate the arrival counts. Based on the three cases
discussed, we cannot use a fixed value for β at all times.

Based on the ideas discussed above, we propose a mech-
anism to dynamically set the value of β. To this end, we
continuously monitor the errors made by both historical
and recent models. The key idea is, if the historical model
is making more accurate predictions, we decrease the value
of β. However, using one global β for all the locations is
potentially problematic. For instance, while historical model
can make better predictions at one region, decreasing β
globally may prevent us from forecasting an anomalous
event elsewhere. Therefore, we use different values of β
for each sub-trajectory. That is to say, the value is decided
based on the prediction errors of similar sub-trajectories
that completed at current time. To measure the destination
prediction error, we first define the prediction centroid.
Definition 6. Consider sub-trajectory Yc at time tc. Let D(Yc)

be the set of all (d, td) where p({d, td − tc}|Yc) > 0 such
that d = (dx, dy). The prediction centroid is defined as

dcenx (Yc) =
∑

(d,td)∈D(Yc)

p({d, td − tc}|Yc)× dx

dceny (Yc) =
∑

(d,td)∈D(Yc)

p({d, td − tc}|Yc)× dy

tcend (Yc) =
∑

(d,td)∈D(Yc)

p({d, td − tc}|Yc)× td

(11)

Prediction centroid is the weighted average of all spatio-
temporal destinations based on their probability. Next we
define the following error function to measure the perfor-
mance of the models:

εc(Y) =|x− dcenx (Yc)|+ |y − dceny (Yc)|+ |t− tcend (Yc)|
(12)

x, y and t are the coordinates and the time of the true
destination of Y . Yc is the sub-trajectory of Y at location c.
The above error function is the Manhattan distance of the
prediction centroid at tc from the true destination plus their
time difference. We can use Eq. 12 to calculate prediction
errors of both historical and recent models. Next, we define
the following measure:

ec(Y) =

{
εco(Y)− εch(Y) if εco(Y) > εtch (Y)

0 otherwise
(13)

Algorithm 6: Calculate E

Input: Completed trajectories (H)
Output: Error Matrix E

1 Ecount ← 0
2 for each Y in H do
3 for each c in Y do
4 if ec(Y) > 0 then
5 w =get direction(Y.s,c)
6 E[c][w] = E[c][w] + ec(Y)
7 Ecount[c][w]++

8 for all c in S do
9 for all directions w do

10 E[c][w] = E[c][w]/Ecount[c][w]

11 return E

Eq. 13 obtains how much the historical model did better
given a specific sub-trajectory, so that we can later decide
which model to use when encountering a similar one.
Therefore, we save all the values calculated using Eq. 13 for
each completed trajectory at time t in a matrix E. The rows
of E represent via location, and the columns represent the
direction of sub-trajectories. An element Ecw is the average
of ec values for all the trajectories that completed at this time
and had c as their via point at which they had the direction
of w. Alg. 6 shows the calculation of the matrix E.

Matrix E provides us with the most recent evidence of
how the two models performed. To take advantage of this
evidence, we propose to use a parameter setting system
similar to PID [37] to adjust the value of β for each sub-
trajectory. A PID system is a parameter correction formula
based on linear combination of three terms: Proportion
of error, Integral of error and Derivative of error. In the
current problem, the correction we need, only depends on
the proportion of error, i.e. the larger the value of Ecw, the
lower β needs to be. Therefore we only use the proportion
term as follows:

φ(c, w) = ρ× Ecw (14)

Higher ρ results in more aggressive corrections, while a
smaller ρ results in more conservative ones. Finally, to adjust
β, we use the following formula:

β(c, w) =

{
0 if φ(c, w) > 1

1− φ if 0 ≤ φ(c, w) ≤ 1
(15)

Based on Eq. 15, the better the historical model performs,
the lower the value of β will be.

5.2.4 Event Forecasting Algorithm

Alg. 7 shows the proposed event forecasting algorithm. It
shows how the novel dynamic parameter setting mecha-
nism and the new proposed destination prediction model
(VIGO-Lite) work together with Mahalanobis distance
method. Line 1 trains the historical model. Line 3 calculates
the error matrix E, using Alg. 6. Line 4 filters the set
of recent trajectories and only keeps the anomalous ones.
Then, for each sub-trajectory, a new β value is set using Eq.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 10

15, denoted as β′ (line 7-9). Note that if matrix E returns
zero, the old β value is kept. This means historical model
did not perform better, thus, β does not need adjustment.
Next, the algorithm predicts the destination of the sub-
trajectory using both recent and historical models. Then,
the centroids are calculated and added to prediction list
of the sub-trajectory for future error calculation (lines 10-
12). Next, the predicted counts are calculated using the
adjusted β (line 13). After obtaining the predicted counts
at each location at time tg , we find the top-k ST regions with
statistically significant arrival counts based on Definition 4.
Scalable algorithms have been proposed to identify regions
of statistically significant hotspots and events [6], [7]. These
algorithms find the most likely event by searching all the
possible spatio-temporal regions with pruning strategies.
However, finding the exact solution is computationally
costly and is inapplicable in the context of real-time event
monitoring. Thereby we use a heuristic algorithm to identify
k events that are statistically significant.

Given the predicted arrival count for each location at
time tg , we first find the grid locations with predicted arrival
counts significantly higher than their respective baselines.
We feed them as seeds to an area expansion algorithm to
summarize the footprints of potential events. See supple-
mental material for details of this algorithm. Finally, the
top k elements of R are returned. To continue the real-time
prediction, Xτ and U are updated and the trajectories that
completed at tc are learned into Mh. See the supplemental
material for a detailed time complexity analysis of DH-
VIGO-TKDE.

6 EVALUATIONS
6.1 Dataset and Settings
We use trajectory datasets from two cities in China. The first
dataset is recorded in Shenzhen during November 2014. It
contains 4 billion GPS points of around 20 thousand taxis,
recorded every 15 seconds. The dataset includes a field
that marks whether the taxi is carrying a passenger or it
is vacant. Using this field, we have extracted 14 million
trajectories from this dataset. We map every point onto a
128 × 64 grid, with cells of size 500 × 500 meters. Our
time-step is one minute. The second dataset is recorded in
Chengdu during November 2016 and is publicly released
by Didi Chuxing Technology Co., which offers a popular
ride-sharing service in China. It contains around 6 million
trajectories with GPS points recorded every 3 seconds [38].
We map every point onto a 64 × 64 grid, with cells of size
130× 130 meters. Our time-step is one minute. Our default
setting for the parameters is ρ = 5, τ = 30 and k = 5.
Table 1 shows a summary of the datasets. The methods were
implemented in C++ and the experiments were run on an
Intel Xeon E5 2.4 GHz with 256 GB of memory1.

6.2 Prediction Accuracy Evaluation
In this experiment, we analyze the ability of the pro-
posed method in predicting gathering events. We split both
datasets into training and testing sets. The training sets
are the first 23 days of the month and the testing sets are

1. All the implementation source code, along with a sampled version of the
Shenzhen dataset is available at:

https://www.biz.uiowa.edu/faculty/xzhou/paper/VIGO TKDE/data sample/

Algorithm 7: Event forecasting procedure (DH-
VIGO-TKDE)

Input: Historical trajectories (Xh), Recent trajectories
(Xτ), Sub-trajectories (U), Completed
trajectories (H), Current and target time tc, tg ,
baseline arrival count (B), k, α, βold

Output: k significant gathering events

1 Mh ← V IGO ST Learner(X); A ← 0; E ← 0
2 while program not terminated do
3 E ←Calculate E(H)
4 X ′

τ ←Mahalanobis(Xτ)
5 Mr ← V IGO − L ST Learner(X ′

τ)
6 for each Yc in U do
7 w ←get direction(Yc.s,c); β′ ← βold

8 if E[c][w] > 0 then
9 β′ ← β(c, w)

10 Dh ← V IGO ST Predictor(Yc,Mh)
11 Dr ← V IGO − L ST Predictor(Yc,Mr)
12 Yc.pred.push(d

cen
h (Yc), d

cen
r (Yc))

13 A ← A+Dh × (1− β′) +Dr × β′

14 R,R0 ← ∅
15 for all locations d do
16 if is significant(A[d], B[d], α) then
17 R0 ← R0

⋃
d

18 R ←area exapnsion(R0)
19 Sort R on LLR(G) in descending order
20 output R.top(k)
21 Update Xτ , U , Mh; t0 = t0 + 1

the remaining 7 days. It is important to note that there is
no ground truth for abnormal gathering events available.
However, for the purpose of this evaluation, we follow the
definition of gathering event in Sec. 3.1. For each dataset,
we compile a list of all the spatio-temporal regions that
satisfy definition 4, based on true counts. Then we compare
the predicted list of events with the true list of events. If
the predicted event is within 4 grid cells of the true event
and within half an hour, we mark the prediction as a true
positive. Fig. 7 shows the result. Fig. 7 (a) and (c) show the
precision of the proposed method compared to the baseline
in Shenzhen and Chengdu. The x-axis is the time in the
future. For Shenzhen, DH-VIGO-TKDE has a precision of
above 0.5 for prediction of events between 2 minutes in the
future and 15 minutes in the future, reaching max precision
of 0.85. H-VIGO-GIS has a precision of below 0.5 except
the third minute in the future. For Chengdu, DH-VIGO-
TKDE has a precision of above 0.85 for prediction of events
9 minutes in the future, reaching max precision of 0.97. The
precision for H-VIGO-GIS drops much earlier in the future.
Fig. 7 (b) and (d) show the recall of the proposed method
compared to the baseline. For Shenzhen, DH-VIGO-TKDE
demonstrates a similar superiority to H-VIGO-GIS in terms
of recall. It reaches the max recall of 0.67 while H-VIGO-GIS
shows a max recall of 0.31. For Chengdu, DH-VIGO-TKDE
also demonstrates superiority to H-VIGO-GIS. It remains
accurate further in the future compared to the baseline.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 1: Datasets Summary

Number of Taxis Number of Points Number of Trips Recording Frequency Area Size Time Coverage

Shenzhen 20 k 4 Billion 14 Million 10 to 15 (s) 64 × 32 km Nov. 2014
Chengdu 181 k 1 Billion 6 Million 3 (s) 8 × 8 km Nov. 2016

(a) Precision (Shenzhen). (b) Recall (Shenzhen). (c) Precision (Chengdu). (d) Recall (Chengdu).

Fig. 7: Prediction performance of DH-VIGO-TKDE vs. H-VIGO-GIS.

6.3 Case Study

In this section we demonstrate a case that shows an example
of algorithm’s success when applied to real-world dataset.
We train different models for weekdays, Saturdays and
Sundays in the month, excluding the day on which we
perform the forecast. Then we run Algorithm 7 on all the
days. Fig. 8 shows a predicted event on November 21st, 2014
in Shenzhen. The black dot in Fig. 8 (a) to (c) is the location
of Shenzhen Bay Sports Center. The red box in Fig. 8 (a)-
(b) is the area output by Algorithm 7 at α = 0.01%. After
we observed this output, we looked into public records and
found that it corresponds to a real event, i.e. a concert that
started at 20:00 with nearly 30,000 attendees [39]. Fig. 8 (a)
shows the forecast 27 minutes before the event (i.e. 19:32).
Fig. 8 (b) shows the prediction 5 minutes before the event
(i.e. 19:45). Fig. 8 (c) shows footprint of the event obtained
by applying the area expansion algorithm to true arrival
counts. Fig. 9 (a) and (b) show heatmaps of the predicted
counts around the event location. Fig. 9 (a) shows predicted
arrival counts when only the historical model is used, i.e.
no recent model. We can see that the event at the stadium is
completely missed, as the predicted counts at the stadium
are very low. This is a failure of the historical model in
capturing a rare pattern. Fig. 9 (b) shows the predicted
counts for the same period by DH-VIGO-TKDE. This time
the predicted counts are correctly concentrated at the event
location because the recent model captures the rare pattern
of this particular event and successfully forecasts it.

Fig. 10 (a) shows the arrival count errors when only
using historical model versus DH-VIGO-TKDE. It is clear
that the historical model consistently underestimates the
counts, hence is unable to capture the significant increase in
the arrival counts, which is necessary to forecast the event.
However, one can notice that shortly after the scheduled
time of the event (t = 0) recent model over-estimates the
counts. This over-estimation is caused by the drop in true
counts after the start of the event. During this time period,
the recent model still keeps predicting the destinations
based on recently observed abnormal pattern of trips while
the trip patterns have started to go back to normal. Dynamic
setting of β is proposed to handle this situation by decreas-
ing the value of β for the appropriate sub-trajectories. Fig. 10
(b) compares the dynamic β (DH-VIGO-TKDE) with fixed
β = 0.9 (H-VIGO-GIS) during the over-estimation period.
H-VIGO-GIS consistently over-estimates the arrival counts,

while count error of DH-VIGO-TKDE stays closer to 0.

6.4 Forecasting Simulated Events
To evaluate the proposed event forecasting method in terms
of timeliness and location accuracy, we need to compare the
forecasts with ground truth. However, as mentioned above,
the ground truth of the gathering events in urban areas
is often not reliably available. To address this challenge,
Vahedian et al. [9] proposed an event simulation mechanism
in which gathering events are simulated by having simu-
lated vehicles travel to a pre-determined location during a
certain period of time. We use this simulation mechanism to
evaluate our proposed method and compare it with the [9].

We use the same five locations and times as Vahedian et
al. [9] for the simulated events. At each location we simulate
two gathering events, one at noon and another at 7 PM,
resulting in a total of 10 gathering events. Fig. 11 shows
the locations of the simulated events in the study area.
To simulate the trips, we first analyze the already verified
gathering event in Sec. 6.3 in terms of travel distance and
arrival time of the trips to the event. Fig. 12 shows the
scatter plot of trip distance versus arrival time as well as
the accumulated number of arrivals based on time. Note
that 0 is the scheduled time of the event and the time
period covered by the plot is the time when the true counts
were significantly high at the event location. To create each
simulated trip for event e at time te and location de, we
first randomly select a point (t, l) from Fig. 12. Then we
randomly select a location at distance l from de to be the
starting point of the trip and we set the arrival time of the
trip to t + te. Then, we query the Google Maps Directions
API [40] to obtain the trip trajectory. Based on our analysis
in Fig. 12, the total number of arrivals in the period when
the number of arrivals were significantly high was 797. It
means in addition to 153 arrivals on average at this location
and time of day, there were 644 more arrivals. Therefore, we
create 644 simulated trips for each simulated event. Then
we run DH-VIGO-TKDE to evaluate its performance based
on simulated events. We would like to evaluate the perfor-
mance of the method in terms of accuracy and timeliness. To
evaluate the accuracy at each time step, we use the following
error function called destination error:

edest = min{distM (R,Rk)|Rk ∈ Result(k)} (16)

Where distM (R,Rk) is the Manhattan distance between
R and Rk, and Result(k) is the set of top k gathering

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 12

(a) 27 minutes ahead of
the time.

(b) 5 minutes ahead of
the time.

(c) Event based on true
arrivals.

Fig. 8: Event forecast on day 21. (a) Historical model. (b) DH-VIGO-TKDE

Fig. 9: Predicted arrival counts (best viewed in color).

(a) Event Starting. (b) Event Ending.

Fig. 10: DH-VIGO-TKDE vs. H-VIGO-GIS and historical
model in the studied case.

Fig. 11: Simulated events’ locations [9].

events forecast by the algorithm. Eq. 16 is the Manhattan
distance between the closest forecast event and the event
location. We set the maximum value of edest to be 10 grid
cells, when it returns 10 or larger. We compare DH-VIGO-
TKDE with H-VIGO-GIS and the SmartEdge algorithm [9].
We use default settings for our methods and the default
settings for SmartEdge presented in [9]. Fig. 13 shows the
average destination error through time. The error of DH-
VIGO-TKDE starts dropping well before H-VIGO-GIS and
much lower than SmartEdge. Moreover, DH-VIGO-TKDE
reaches destination error of zero, while SmartEdge never
reaches that value.

Next in this simulation analysis, we compare the timeli-
ness of DH-VIGO-TKDE to the baseline. First, we consider
the predicted count at a simulated event location, as we
get closer to the simulated event time. Fig. 14 shows the
predicted counts of the proposed method and the baselines
prior to the start of the event. The x-axis shows the time
the prediction is performed. Time 0 is the time of the
event. The dashed horizontal line is the cut-off value of
statistically significant count. Fig. 14 shows that DH-VIGO-
TKDE predicts a statistically significant count at around 17
minutes before the event. This value is 12 minutes for H-

Fig. 12: Trip distance vs. ar-
rival time (Sec. 6.3). Fig. 13: Average destination

error over time.

Fig. 14: Predicted counts at
event location.

Fig. 15: Earliest prediction of
the simulated event.

VIGO-GIS. Meanwhile, the historical model completely fails
to predict any significantly high counts.

Fig. 15 shows how early a statistically significant count is
predicted for a simulated event. The y-axis is the prediction
time and the x-axis is the target time. The dashed line shows
real-time detection, i.e. observation, no prediction. Both
plots, being below the dashed line, show that the simulated
event is consistently predicted ahead of the time i.e. before
its observed arrival count became significant. Moreover,
DH-VIGO-TKDE stays generally bellow the baseline, mean-
ing it generally predicts the simulated event earlier.

6.5 Running Time Evaluation
Fast processing is crucial for continuous event forecasting.
Thus, in this experiment we evaluate the running time of the
proposed method and compare with baseline. It is expected
that DH-VIGO-TKDE will have a longer running time than
H-VIGO-GIS, because it performs more operations to reach
higher accuracies. In this experiment, we evaluate its run-
ning time to determine whether this increased running time
is justifiable, given the gained performance improvements.
Fig. 16 shows the time cost of doing forecasting by vary-
ing grid size and τ . Event forecasting time increases by
increasing both parameters. In Fig. 16 (b) as τ increases, the
event prediction time also increases since more trajectories
are used to train the recent model. For DH-VIGO-TKDE,

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 13

(a) Varying grid size. (b) Varying τ

Fig. 16: Running time of event forecasting.

setting β dynamically requires us to save predictions in
advance and calculate prediction errors at each time-step for
completed trips. Moreover, the method also calculates Ma-
halanobis distance for each recent trajectory. Fig. 16 shows
that these operations have very small impact on the event
forecasting time. The results show that even with finest grid
resolution and largest τ the forecasting time cost is around
3 seconds. This level of performance keeps it possible for
real-time forecasting of gathering events at 1-minute level.

6.6 VIGO Accuracy, Memory Cost and Running Time
Evaluations
We proposed our destination prediction method, VIGO,
in our prior work [8]. Therefore, we have not included
its evaluations in the main text of this article. However,
for the sake of this paper being self-contained, we have
included the those evaluations in the supplemental material.
The evaluations show that VIGO outperforms stat-of-the-art
destination prediction methods [14], [16], [41] in terms of
prediction accuracy. VIGO also outperforms the baselines in
terms of memory cost and running time. For detailed results,
please refer to the supplemental material.

7 CONCLUSIONS

In this paper, we addressed the gathering event forecasting
problem through destination prediction of incomplete trips.
Event forecasting in urban setting is important to traffic
management and public safety. Prior event detection tech-
niques are mostly descriptive, which only rely on on-site ob-
servations such as taxi drop-offs therefore lacking the ability
to make forecasts ahead of the time. In our prior work [8],
we proposed a predictive approach to identify future events
through trajectory destination prediction. We designed a
hybrid prediction mechanism (H-VIGO-GIS), which com-
bined two destination prediction models, one was learned
from historical trajectories and the other learned from recent
ones. The role of the recent model was to capture the non-
typical patterns of trajectories in case of rare gathering
events, which the historical model is incapable of capturing.
However, H-VIGO-GIS had a number of limitations regard-
ing the training process of the recent model, the prediction
sparsity of the recent model and fixed combination weight
in the hybrid mechanism. Addressing these issues, in this
paper we proposed a Dynamic Hybrid model (DH-VIGO-
TKDE) that addressed the above-mentioned limitations. We
performed comprehensive evaluations using two large real-
world datasets and an event simulator. The experiments
showed the proposed model significantly improved the
prediction accuracy and timeliness of forecasting gathering
events, resulting in superior precision and recall values,
compared to H-VIGO-GIS.

ACKNOWLEDGMENTS
This work is partially supported by the NSF under Grant
Number IIS-1566386. Yanhua Li was supported in part by
NSF CRII grant CNS-1657350 and a research grant from
Pitney Bowes Inc. This research uses datasets provided by
DiDi Chuxing Technology Company [38].

REFERENCES

[1] (2014) Shanghai stampede - wikipedia. [Online]. Available: https://en.
wikipedia.org/wiki/2014 Shanghai stampede

[2] M. Kulldorff, “A spatial scan statistic,” Communications in Statistics-Theory and
methods, vol. 26, no. 6, pp. 1481–1496, 1997.

[3] M. Kulldorff, R. Heffernan, J. Hartman, R. Assunçao, and F. Mostashari, “A
space-time permutation scan statistic for disease outbreak detection,” PLoS
medicine, vol. 2, no. 3, p. 216, 2005.

[4] L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou, “Detecting urban black
holes based on human mobility data,” in Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems. ACM,
2015, p. 35.

[5] Z. Li, H. Xiong, and Y. Liu, “Mining blackhole and volcano patterns in
directed graphs: a general approach,” Data Mining and Knowledge Discovery,
vol. 25, no. 3, pp. 577–602, 2012.

[6] D. B. Neill and A. W. Moore, “Rapid detection of significant spatial clusters,”
in Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2004, pp. 256–265.

[7] D. B. Neill, “Expectation-based scan statistics for monitoring spatial time
series data,” International Journal of Forecasting, vol. 25, no. 3, pp. 498–517,
2009.

[8] A. Vahedian, X. Zhou, L. Tong, Y. Li, and J. Luo, “Forecasting gathering
events through continuous destination prediction on big trajectory data,” in
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM, 2017.

[9] A. V. Khezerlou, X. Zhou, L. Li, Z. Shafiq, A. X. Liu, and F. Zhang, “A
traffic flow approach to early detection of gathering events: Comprehensive
results,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8,
no. 6, p. 74, 2017.

[10] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing: concepts,
methodologies, and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 5, no. 3, p. 38, 2014.

[11] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations and
travel sequences from gps trajectories,” in Proceedings of the 18th international
conference on World wide web. ACM, 2009, pp. 791–800.

[12] X. Cao, G. Cong, and C. S. Jensen, “Mining significant semantic locations from
gps data,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 1009–1020,
2010.

[13] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu, “Destination
prediction by sub-trajectory synthesis and privacy protection against such
prediction,” in Data Engineering (ICDE), 2013 IEEE 29th International Confer-
ence on. IEEE, 2013, pp. 254–265.

[14] A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li, “Solving the data
sparsity problem in destination prediction,” The VLDB Journal, vol. 24, no. 2,
pp. 219–243, 2015.

[15] D. Xue, L.-F. Wu, H.-B. Li, Z. Hong, and Z.-J. Zhou, “A novel destination pre-
diction attack and corresponding location privacy protection method in geo-
social networks.” International Journal of Distributed Sensor Networks, vol. 13,
no. 1, 2017.

[16] L. Wang, Z. Yu, B. Guo, T. Ku, and F. Yi, “Moving destination prediction using
sparse dataset: A mobility gradient descent approach,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 11, no. 3, p. 37, 2017.

[17] M. Kulldorff, W. F. Athas, E. J. Feurer, B. A. Miller, and C. R. Key, “Evaluating
cluster alarms: a space-time scan statistic and brain cancer in los alamos, new
mexico.” American journal of public health, vol. 88, no. 9, pp. 1377–1380, 1998.

[18] X. Zhou, A. V. Khezerlou, A. Liu, Z. Shafiq, and F. Zhang, “A traffic flow
approach to early detection of gathering events,” in Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems. ACM, 2016, p. 4.

[19] M. X. Hoang, Y. Zheng, and A. K. Singh, “Fccf: forecasting citywide crowd
flows based on big data,” in Proc. of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 2016, p. 6.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 14

[20] F. Chen and D. B. Neill, “Non-parametric scan statistics for event detection
and forecasting in heterogeneous social media graphs,” in Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 1166–1175.

[21] J. Krumm and E. Horvitz, “Eyewitness: Identifying local events via space-
time signals in twitter feeds,” in Proceedings of the 23rd SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems. ACM, 2015,
p. 20.

[22] C. Zhang, L. Liu, D. Lei, Q. Yuan, H. Zhuang, T. Hanratty, and
J. Han, “Triovecevent: Embedding-based online local event detection in
geo-tagged tweet streams,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’17. New York, NY, USA: ACM, 2017, pp. 595–604. [Online]. Available:
http://doi.acm.org/10.1145/3097983.3098027

[23] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of gathering
patterns from trajectories,” in Data Engineering (ICDE), 2013 IEEE 29th Inter-
national Conference on. IEEE, 2013, pp. 242–253.

[24] K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou, “Online discovery of
gathering patterns over trajectories,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 8, pp. 1974–1988, 2014.

[25] L. Chen, M. Lv, and G. Chen, “A system for destination and future route
prediction based on trajectory mining,” Pervasive and Mobile Computing, vol. 6,
no. 6, pp. 657–676, 2010.

[26] K. Tanaka, Y. Kishino, T. Terada, and S. Nishio, “A destination prediction
method using driving contexts and trajectory for car navigation systems,” in
Proceedings of the 2009 ACM symposium on Applied Computing. ACM, 2009,
pp. 190–195.

[27] J. Krumm, R. Gruen, and D. Delling, “From destination prediction to route
prediction,” Journal of Location Based Services, vol. 7, no. 2, pp. 98–120, 2013.

[28] L. Chen, M. Lv, Q. Ye, G. Chen, and J. Woodward, “A personal route predic-
tion system based on trajectory data mining,” Information Sciences, vol. 181,
no. 7, pp. 1264–1284, 2011.

[29] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic trajectory
mining for location prediction,” in Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. ACM,
2011, pp. 34–43.

[30] J. Krumm and E. Horvitz, “Predestination: Inferring destinations from partial
trajectories,” in International Conference on Ubiquitous Computing. Springer,
2006, pp. 243–260.

[31] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg, “Who are you with and
where are you going?” in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. IEEE, 2011, pp. 1345–1352.

[32] J. A. Alvarez-Garcia, J. A. Ortega, L. Gonzalez-Abril, and F. Velasco, “Trip
destination prediction based on past gps log using a hidden markov model,”
Expert Systems with Applications, vol. 37, no. 12, pp. 8166–8171, 2010.

[33] B. Cancela, A. Iglesias, M. Ortega, and M. G. Penedo, “Unsupervised trajec-
tory modelling using temporal information via minimal paths,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp.
2553–2560.

[34] X. Li, M. Li, Y.-J. Gong, X.-L. Zhang, and J. Yin, “T-desp: Destination predic-
tion based on big trajectory data,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 17, no. 8, pp. 2344–2354, 2016.

[35] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecast-
ing,” in European Conference on Computer Vision. Springer, 2012, pp. 201–214.

[36] P. C. Mahalanobis, “On the generalized distance in statistics.” National
Institute of Science of India, 1936.

[37] K. J. Åström and T. Hägglund, PID controllers: theory, design, and tuning. Isa
Research Triangle Park, NC, 1995, vol. 2.

[38] (2019) Gaia open datasets. [Online]. Available: https://outreach.didichuxing.
com/research/opendata/en/

[39] (2014) 10th anniversary of the mixc - super stars concert. [Online]. Available:
http://news.ifeng.com/a/20141128/42597678 0.shtml

[40] “Routes and directions on google maps platform - google cloud,” https://
cloud.google.com/maps-platform/routes/, 2018, accessed: 2018-08-17.

[41] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Yu, and Y. Tang, “Desteller: A system
for destination prediction based on trajectories with privacy protection,”
Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1198–1201, 2013.

Amin Vahedian is currently working towards his PhD in

Management Sciences at Tippie College of Business,

University of Iowa. He has a Master’s and a Bachelor’s

degree in Information Technology. His research inter-

ests include big data analytics and spatial and spatio-

temporal data mining. He has published articles in ACM

and IEEE Transactions and ACM conference proceed-

ings.

Xun Zhou is currently an Assistant Professor in the De-

partment of Management Sciences at the University of

Iowa. He received a PhD degree in Computer Science

from the University of Minnesota, Twin Cities in 2014.

His research interests include big data management

and analytics, spatial and spatio-temporal data mining,

and Geographic Information Systems (GIS). He has

published over 30 papers in these areas and has re-

ceived three best paper awards. He also served as a co-

editor-in-chief of the Encyclopedia of GIS, 2nd Edition.

Ling Tong has a BBA in Business Analytics & Informa-

tion Systems and a BS in Mathematics. She is currently

working towards her Master’s degree in Informatics at

the University of Iowa. Her research interests include

data mining and mathematical optimiziation. As an un-

dergraduate, she won the third place in the Syngenta

Crop Challenge in Analytics in 2016.

Yanhua Li (S09-M13-SM16) received two Ph.D. de-

grees in electrical engineering from Beijing University of

Posts and Telecommunications, Beijing in China in 2009

and in computer science from University of Minnesota

at Twin Cities in 2013, respectively. He has worked

as a researcher in HUAWEI Noah’s Ark LAB at Hong

Kong from Aug 2013 to Dec 2014, and has interned in

Bell Labs in New Jersey, Microsoft Research Asia, and

HUAWEI research labs of America from 2011 to 2013.

He is currently an Assistant Professor in the Depart-

ment of Computer Science at Worcester Polytechnic Institute (WPI) in Worcester,

MA. His research interests are urban network data analytics, smart cities, data-

driven cyber-physical systems (CPS).

Jun Luo is a senior researcher at Lenovo Machine

Intelligence Center in Hong Kong. He received his PhD

degree in computer science from the University of Texas

at Dallas, USA, in 2006. His research interests include

big data, machine learning, spatial temporal data mining

and computational geometry. He has published over 90

journal and conference papers in these areas.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 17,2020 at 22:05:37 UTC from IEEE Xplore. Restrictions apply.

